|
公司基本資料信息
|
因此,實際金屬和合金的液體結(jié)構(gòu)中存在著兩種起伏:一種是能
量起伏,表現(xiàn)為各個原子間能量的不同和各個原子集團(tuán)間尺寸的不同;另一種是濃度起伏,
表現(xiàn)為各個原子集團(tuán)之間成分的不同。
如果AB原子間的結(jié)合力較強(qiáng),則足以在液體中形成新的化學(xué)鍵,在熱運(yùn)動的作用下,
出現(xiàn)時而化合,時而分解的分子,也可稱為臨時的不穩(wěn)定化合物,或者在低溫時化合,在高
溫時分解。例如,硫在鐵液中高溫時可以完全溶解,而在較低溫度下則可能析出FeS。當(dāng)
AB原子間或同類原子間結(jié)合非常強(qiáng)時,則可以形成比較強(qiáng)而穩(wěn)定的結(jié)合,在液體中就出現(xiàn)
新的固相 (如氧在鋁中形成Al2O3,氧與鐵中的硅形成SiO2 等)或氣相。
②σSG<σLS時,cosθ為負(fù)值,即θ>90°。此情況下,液體傾向于形成球狀,稱之為液體能潤濕固體。θ=180°為完全不潤濕。
2影響界面張力的因素
(1)熔點 原子間結(jié)合力大的物質(zhì),其熔點高,表面張力也大。表13為幾種金屬的熔和表面張力。
(2)溫度 對于多數(shù)金屬和合金,
度升高,表面張力降低,即dσdt<0。這因為,溫度升高時,液體質(zhì)點間距增,表面質(zhì)點的受力不對稱性減弱,因表面張力降低。當(dāng)達(dá)到液體的臨界溫時,由于氣液兩相界面消失,表面張等于零。但是,對于某些合金,如鑄
、碳鋼、銅及其合金等,其表面張力隨溫度的升高而增大,即dσdt>0。如圖1所示。
而是在鑄件最后凝固的部位留下集中的縮孔,如圖136所示。由于集中縮孔容易消除 (如設(shè)置冒口),一般認(rèn)為這類合金
的補(bǔ)縮性良好。在板狀和棒狀鑄件上會出現(xiàn)中心線縮孔。這類合金鑄件在凝固過程中,當(dāng)收
縮受阻而產(chǎn)生晶間裂紋時,也容易得到金屬液的充填,使裂紋愈合,所以鑄件的熱裂傾向
性小。
寬結(jié)晶溫度范固的合金 (如高碳鋼、球墨鑄鐵、鋁銅合金、鋁鎂合金、鎂合金等)鑄件
圖137 體積凝固方式的縮松的凝固區(qū)域?qū)?,液態(tài)金屬的過冷很小,容易發(fā)展成為樹枝發(fā)達(dá)
的粗大等軸晶組織。當(dāng)粗大的等軸晶相互連接以后 (固相約占
70%),便將尚未凝固的液態(tài)金屬分割為一個個互不溝通的溶池,最后在鑄件中形成分散性的縮孔即縮松。