|
公司基本資料信息
|
距離再縮短時,吸引力又逐漸減小,
到R=R0時,相互作用力等于零 (F=0),此時達到平衡,
R0 為平衡距離。當距離小于平衡距離R0 時,出現(xiàn)排斥力
(P>0),并隨距離的繼續(xù)縮短而迅速增大。作用力F是由
引力和斥力構成的合力。吸引力是異性電荷間的庫侖引
力;排斥力是同性電荷之間的斥力和。兩個原子的相互作
用勢能W (R)的曲線如圖11(b)所示,可見在R=R0
時,對應于能量的極小值,狀態(tài)穩(wěn)定。這說明,原子之間
傾向于保持一定的間距,這就是在一定條件下,金屬中的
原子具有一定排列的原因。
1金屬晶體中的原子結合、加熱膨脹、熔化
晶體的結構和性能主要決定于組成晶體的原子結構和它們之間的相互作用力與熱運動。
各種不同的晶體其結合力的類型和大小是不同的。但是在任何晶體中,兩個原子間的相互作
圖11?。痢ⅲ略幼饔昧Γ坪?/p>
勢能W 與原子間距R的關系
用力或相互作用勢能與它們之間距離的關系在性質上是相同的,如圖11所示。圖11(a)
表示原子間相互作用力F隨原子間距離R的變化規(guī)律。當兩個原子相距無窮遠時,相互作
用力為零,當兩原子靠近時,原子間產生吸引力 (F<0),
并隨距離的縮短而增大。隨著距離的繼續(xù)縮短,到達R=
R1 時,吸引力大。
一般來說,狀態(tài)
圖上具有較穩(wěn)定的化合物的合金,在一定的成分范圍內熔化以后,這種化合物不易分解,即
在液態(tài)中容易保留相近成分的原子集團。
有些熔點較低而在金屬中固溶能力很低的元素,同類原子間 (BB)的結合力比金屬
(AA)及其與金屬的原子結合力 (AB)也較小時 (不形成化合物),則AA原子易聚集在
一起,而把B原子排擠在原子集團外圍和液體的界面上,如同吸附在其表面一樣。但當這
種元素的加入量較大時,則也可以被排擠在一起形成BB原子集團,甚至形成液體的分層。