|
公司基本資料信息
|
。這是由于難熔化合物的結(jié)合
力強,在冷至熔點之前就及早地開始了原子集聚。對于
共晶成分合金,異類原子間不發(fā)生結(jié)合,而同類原子聚
合時,由于異類原子的存在所造成的阻礙,使它們聚合
緩慢,晶胚的形成滯后,故黏度較非共晶成分的低。
(3)夾雜 液態(tài)合金中呈固態(tài)的非金屬夾雜物的存
在使液態(tài)合金成為不均勻的多相系統(tǒng),液體流動時內(nèi)摩
擦力增加。造成液態(tài)合金的黏度增加,如鋼中的硫化錳、
氧化鋁、氧化硅等。
對應(yīng)著漸次收縮的鑄型體積,鑄件的冷卻速度比平面部分要小。由此可以
推論,鑄型中被液態(tài)金屬三面包圍的突出部分、型芯以及靠近內(nèi)澆道附近的鑄型部分,由于
有大量金屬液通過,被加熱到很高溫度,吸熱能力顯著下降,相對應(yīng)的鑄件部分,其溫度場
就比較平坦。
二、不同界面熱阻條件下的溫度場
1鑄件在絕熱鑄型中凝固
砂型、石膏型、陶瓷型、熔模鑄造等鑄型材料的熱導(dǎo)率遠小于凝固金屬的熱導(dǎo)率,可統(tǒng)
稱為絕熱鑄型。因此,在凝固傳熱中,金屬鑄件的溫度梯度比鑄型中的溫度梯度小得多。相
對而言,金屬中的溫度梯度可忽略不計。
程傳熱特征的各物理量之間的方程式,即鑄件和鑄型的溫度場數(shù)學(xué)模型并加以求解。目前數(shù)
值模擬方法日臻完善,應(yīng)用范圍也在進一步拓寬。在實現(xiàn)溫度場模擬的同時,還能對工藝參
數(shù)進行優(yōu)化、宏觀及微觀組織的模擬等。但從三者的聯(lián)系上看,數(shù)學(xué)解析法得到的基本公式
是進行數(shù)值模擬的基礎(chǔ),而實驗測定溫度場對具體的實際凝固問題有不可替代的作用,也是
驗證理論計算的必要途徑。
一、數(shù)學(xué)解析法
應(yīng)該指出,鑄件在鑄型中的凝固和冷卻過程是非常復(fù)雜的。這是因為,它首先是一個不
穩(wěn)定的傳熱過程,鑄件上各點的溫度隨時間而下降,而鑄型溫度則隨時間上升;其次,鑄件
的形狀各種各樣,其中大多數(shù)為三維的傳熱問題;