|
公司基本資料信息
|
因此,實際金屬和合金的液體結(jié)構(gòu)中存在著兩種起伏:一種是能
量起伏,表現(xiàn)為各個原子間能量的不同和各個原子集團間尺寸的不同;另一種是濃度起伏,
表現(xiàn)為各個原子集團之間成分的不同。
如果AB原子間的結(jié)合力較強,則足以在液體中形成新的化學(xué)鍵,在熱運動的作用下,
出現(xiàn)時而化合,時而分解的分子,也可稱為臨時的不穩(wěn)定化合物,或者在低溫時化合,在高
溫時分解。例如,硫在鐵液中高溫時可以完全溶解,而在較低溫度下則可能析出FeS。當
AB原子間或同類原子間結(jié)合非常強時,則可以形成比較強而穩(wěn)定的結(jié)合,在液體中就出現(xiàn)
新的固相 (如氧在鋁中形成Al2O3,氧與鐵中的硅形成SiO2 等)或氣相。
(1)鑄型的蓄熱系數(shù) 鑄型的蓄熱系數(shù)b2 (b2= c2ρ2λ槡2)表示鑄型從其中的金屬中吸
取并儲存于本身中熱量的能力。蓄熱系數(shù)b2
越大,鑄型的激冷能力就越強,金屬液于其中
保持液態(tài)的時間就越短,充型能力下降。金屬型鑄造中,經(jīng)常采用涂料調(diào)整其蓄熱系數(shù)b2
。
為使金屬型澆口和冒口中的金屬液緩慢冷卻,常在一般的涂料中加入b2
很小的石棉粉。
(2)鑄型的溫度 預(yù)熱鑄型能減小金屬與鑄型的溫差,從而提高其充型能力。例如,在
金屬型中澆注鋁合金鑄件,將鑄型溫度由340℃提高到520℃,在相同的澆注溫度 (760℃)
下,螺旋線長度由525mm增加到950mm。在熔模鑄造中,為得到清晰的鑄件輪廓,可將型
殼焙燒到800℃以上進行澆注或利用型殼焙燒剛結(jié)束的高溫余熱進行澆注。
對應(yīng)著漸次收縮的鑄型體積,鑄件的冷卻速度比平面部分要小。由此可以
推論,鑄型中被液態(tài)金屬三面包圍的突出部分、型芯以及靠近內(nèi)澆道附近的鑄型部分,由于
有大量金屬液通過,被加熱到很高溫度,吸熱能力顯著下降,相對應(yīng)的鑄件部分,其溫度場
就比較平坦。
二、不同界面熱阻條件下的溫度場
1鑄件在絕熱鑄型中凝固
砂型、石膏型、陶瓷型、熔模鑄造等鑄型材料的熱導(dǎo)率遠小于凝固金屬的熱導(dǎo)率,可統(tǒng)
稱為絕熱鑄型。因此,在凝固傳熱中,金屬鑄件的溫度梯度比鑄型中的溫度梯度小得多。相
對而言,金屬中的溫度梯度可忽略不計。